top of page

Publications

Last Update: July 2025

  1. Lipschitz extensions of linear operators📖.  arXiv:2506.14924, 2025
    (Joint work with N. Albarracín)

  2. Lipschitz (p,σ,q,η)-dominated operators📖.   Colloquium Mathematicum DOI: 10.4064/cm9434-5-2025  
    (Joint work with N. Albarracín, A. Belacel and A. Bogoutaia)

  3. Entropy numbers and box dimension of polynomials and holomorphic functions.📖  Math. Nach. 298  (2025), 567-580.  
    (Joint work with . Carando, C. D'Andrea and L. Torres)

  4. On the Lipschitz operator ideal Lip o A o Lip. 📖  Studia Math.  277 (2024), 243 - 269.
    (Joint work with N. Albarracín)

  5. E-Operator Ideals Determined by Banach Spaces with Unconditional Bases. 📖 Mediterr. J. Math. 19, 273 (2022). 
    (Joint work with J. M. Kim and B. Zheng)

  6. Spaceability of sets of p-compact maps. 📖 J. Math. Appl. 514  (2022), 126–265.
    (Joint work with T. Alves)

  7. Lifting some approximation properties form a dual space X′ to the Banach space X. 📖 Studia Math. 257 (2021), 287–294.
    (Joint work with J. M. Kim and S. Lassalle)

  8. The Lipschitz injective hull of Lipschitz operator ideals and applications. 📖 Banach J. Math. Anal. 14 (2020), 1241–1257.
    (Joint work with D. Achour and E. Dahia)

  9. Lipschitz p-compact mappings. 📖  Monatsh. Math. 189 (2019), 595–609.
    (Joint work with D. Achour and E. Dahia)

  10. Galois connection between Lipschitz and linear operator ideals and minimal Lipschitz operator ideals. 📖  J. Funct. Anal. (2018). J. Funct. Anal. 277 (2) (2019), 434–451.
    (Joint work with R. Villafañe)

  11. Polynomials and holomorphic functions on A-compact sets in Banach spaces. 📖  J. Math. Appl. 463 (2) (2018), 1092–1108.
    (Joint work with S. Lassalle)

  12. On null sequences for Banach operator ideals, trace duality and approximation properties. 📖  Math. Nach. 290 (2017), 2308–2321.
    (Joitn work with S. Lassalle)

  13. A-compact mappings. 📖 Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 110 (2016), 863–880.
     

  14. Weaker relatives of the bounded approximation property for a Banach operator ideal. 📖  J. Approx. Theory 205 (2016), 25–42.
    (Joint work with S. Lassalle and E. Oja)

  15. The Banach ideal of A-compact operators and related approximation properties. 📖 J. Funct. Anal. 265 (2013), 2452–2464.
    (Joint work with S. Lassalle)

  16. The ideal of p-compact operators: a tensor product approach. 📖  Studia Math. 211 (3) (2012), 269-286.
    (Joint work with D. Galicer and S. Lassalle)

  17. On p-compact mappings and the p-approxiamtion property. 📖  J. Math. Appl. 289 (2) (2012), 1204-1221.
    (Joint work with S. Lassalle)

bottom of page